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Abstract
Random walks in random environments and their diffusion analogues have
been a source of surprising phenomena and challenging problems, especially
in the non-reversible situation, since they began to be studied in the 1970s. We
review the model, available results and techniques, and point out several gaps
in the understanding of these processes.
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Mathematics Subject Classification: 60K37, 82C44

1. Introduction

Random walks and their scaling limits, diffusion processes, provide a simple yet powerful
description of random processes, and are fundamental in the description of many fields, from
biology through economics, engineering, and statistical mechanics. A large body of work
has accumulated concerning the properties of such processes, and very detailed information is
available. We refer to [Sp76, L91, ReY99] and [StV79] for the background on random walks
and diffusion processes.

Yet, in many situations, the medium in which the process evolves is highly irregular.
Without further modelling, this results with spatially inhomogeneous Markov processes, and
not much can be said. Things are however different if some degree of homogeneity is assumed
on the law of the environment. When the underlying state space on which the walk moves with
nearest-neighbour steps is the lattice Z

d , d � 1, and the law of the environment is assumed
stationary, we call the resulting random walk a random walks in random environment (RWRE).
An effort to model such situations for random walks on Z, originally motivated by biological
applications, can be traced back to [T72]. We refer to [Hg96] for a comprehensive description
of the literature up to 1996; see also [Rv05].

A precise formulation of the RWRE model is as follows. Let S denote the 2d-dimensional
simplex, set � = SZd

, and let ω(z, ·) = {ω(z, z + e)}e∈Zd,|e|=1 denote the coordinate of ω ∈ �
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corresponding to z ∈ Zd . ω is an ‘environment’ for an inhomogeneous nearest-neighbour
random walk (RWRE) started at x with quenched transition probabilities Pω(Xn+1 = z +
e|Xn = z) = ω(x, x + e) (e ∈ Z

d , |e| = 1), whose law is denoted by P x
ω . We write Ex

ω (and
not 〈·〉P x

ω
) for expectations with respect to the law P x

ω , and write Pω and Eω for P 0
ω and E0

ω. In
the RWRE model, the environment is random, of law P, which is always assumed stationary
and ergodic. We often assume that the environment is uniformly elliptic, that is there exists an
ε > 0 such that P-a.s., ω(x, x + e) � ε for all x, e ∈ Z

d , |e| = 1. Finally, we denote by P the
annealed law of the RWRE started at 0, that is the law of {Xn} under the measure P × P 0

ω ,
and again we write E (and not 〈·〉P) for expectations with respect to P and E (and not 〈·〉P )
for expectations with respect to P. For future reference, we recall that, given a probability
measure Q, a statement occurs Q almost surely (in short, Q-a.s.) if the Q-probability that the
statement does not hold is 0. If a statement involving only the random walk holds P-a.s., it
implies that for P-almost every ω, the statement holds Pω-a.s.

Mathematically, and especially for d > 1, the RWRE model leads to the analysis of
irreversible, inhomogeneous Markov chains, to which standard tools of homogenization
theory do not apply well. Further, unusual phenomena, such as sub-diffusive behaviour,
polynomial decay of probabilities of large deviations, and trapping effects, arise, already in
the one-dimensional model.

To get an idea of some of the unusual features of the RWRE model, we begin by discussing
the one-dimensional case. This model, being reversible, is fairly well understood, and we
review the results (in section 2) and available techniques (in section 3). We then turn in section 4
to the multidimensional non-reversible case in the non-perturbative regime. Section 5 is
devoted to the description of some of the tools that have been developed in recent years to
handle this situation, while section 6 is devoted to the perturbative regime. Section 7 quickly
reviews the available results for the related model of (non-reversible) diffusions in random
environments. In section 8, we collect some information about related models that we do not
describe in detail in this review. This review borrows heavily from [Sz04, Zt02] and [Zt04].

2. One-dimensional RWRE

When d = 1, we write ωx = ω(x, x + 1), ρx = (1 − ωx)/ωx and u = E log ρ0. The motion
of the RWRE in the random environment resembles the motion of a particle in a random
potential, where the potential at the point x > 0 is V (x) = ∑x

i=0 log ρi . Thus, fluctuations in
the environment that result in high potential barriers may confine the particle. We describe in
this section the behaviour of the RWRE, postponing to section 3 a description of the analogy
between the motion of particles in a random potential and the RWRE.

We recall some standard notation and definitions: for any sequence (an), sup an denotes
the supremum of the sequence, i.e. the smallest number A such that an � A for all n. If
the sequences possess a maximum, its supremum equals that maximum. The infimum of the
sequence, denoted by inf an, equals sup(−an). Further, lim sup an, the limsup of (an), is the
largest number A such that for any ε one can find a sequence nk → ∞ with ank

> A − ε for
all k. Finally, lim inf an = lim sup(−an).

2.1. Ergodic behaviour

Recall that for a homogeneous environment (that is, when the stationary measure P has a
marginal which charges a single value: ωi = ω̄ for all i), we have Xn/n → vω̄ := 2ω̄ − 1
and (Xn − nvω̄)/

√
ω̄(1 − ω̄)n converges in distribution to a standard Gaussian. Our first goal

is to clarify the corresponding statements in the case of the RWRE, and in particular reveal
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some of the surprising phenomena associated with the RWRE. As it turns out, the sign of u
determines the direction of escape of the RWRE, while the limiting behaviour depends on an
explicit function of the law of the environment.

Theorem 2.1 (transience, recurrence, limit speed, d = 1).

(a) If u < 0 then Xn →n→∞ ∞, P-a.s. If u > 0 then Xn → −∞, P-a.s. Finally, if u = 0
then the RWRE oscillates, that is, P-a.s.,

lim sup
n→∞

Xn = ∞, lim inf
n→∞ Xn = −∞.

Further, there is a deterministic v such that

lim
n→∞

Xn

n
= v, P − a.s., (2.1)

v > 0 if
∑∞

i=1 E
(∏i

j=0 ρ−j

)
< ∞, v < 0 if

∑∞
i=1 E

(∏i
j=0 ρ−1

−j

)
< ∞, and v = 0

if both these conditions do not hold.
(b) If P is a product measure then

v =




(1 − E(ρ0))/(1 + E(ρ0)), E(ρ0) < 1,

−(
1 − E

(
ρ−1

0

))/(
1 + E

(
ρ−1

0

))
, E

(
ρ−1

0

)
< 1,

0, else.

(2.2)

Statement (2.1) that Xn/n converges to a deterministic limit (under both the quenched and
annealed measures) is referred to as a law of large numbers (LLN). Theorem 2.1 is essentially
due to [So75]; see [A99] and [Zt04] for a proof in the general ergodic setup. In sections 3.1
and 3.2, we sketch the argument.

Remark 2.2. The surprising features of the RWRE model can be appreciated if one notes the
following facts, all for a product measure P:

(a) Suppose u < 0, that is Xn → ∞, P-a.s. By Jensen’s inequality, log Eρ0 � E log ρ0, but
it is quite possible that Eρ0 > 1. Thus, it is possible to construct i.i.d. environments in
which the RWRE is transient, but the speed v = 0.

(b) Suppose v̄ = 2Eω0 − 1 denotes the speed of a (biased) simple random walk with
probability of jump to the right equal, at any site, to Eω0. It is easy to construct examples
with v̄ > 0 but u > 0, which means that Xn → −∞ even if the static speed v̄ points
to the right (such an example is obtained if, for example, ω0 equals 0.6 with probability
10/11 and equals 0.001 with probability 1/11). However, by Jensen’s inequality, if v < 0
then

1 > Eρ−1
0 = E(1/(1 − ω0) − 1) � 1 − E(1 − ω0)

E(1 − ω0)
= 1 + v̄

1 − v̄
,

and hence v < 0 implies that v̄ < 0. Thus, if the static speed v̄ is positive, the RWRE
may be transient to the left but if so, only with zero speed. We come back to this point
in section 4.4.2, where we show that the last property is not necessarily true in high
dimension.

(c) Another application of Jensen’s inequality reveals that |v| � |v̄|, with examples of
strict inequality readily available, for example as in point (b) above. Thus, the random
environment exhibits in general a slowdown with respect to the (averaged, deterministic)
environment.
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2.2. Limit laws, transient RWRE

Having clarified the ergodic behaviour of the RWRE, we turn to the discussion of limit laws in
the transient setup, which turn out to be different under the annealed and quenched measures.
We discuss in this section product measures P with u := E(log ρ0) < 0 (i.e., when the RWRE
is transient to +∞). Set s = sup

{
r : E

(
ρr

0

)
< 1

}
and note that because u < 0, necessarily

s ∈ (0,∞]. Set Ti = min{n � 0 : Xn = i} and τi = Ti − Ti−1. The behaviour of the
RWRE can be dramatically different from that of ordinary random walk, due to the existence
of localized pockets of environments (‘traps’) where the walk spends a large time. We explain
this point in some detail in section 3.3.

Theorem 2.3. Suppose P is a uniformly elliptic i.i.d. environment with u < 0.

(a) Suppose s > 2. Then there exists a deterministic constant σ 2 > 0 such that the sequence
of random variables Wn := (Xn − nv)/σ

√
n converges, under the annealed law, to a

standard Gaussian random variable, that is

P(Wn > x) →n→∞
1√
2π

∫ ∞

x

e−y2/2 dy.

Further, with Zn(ω) = v
∑[nv]

i=1 (Eωτi − 1/v), and σ 2
q = |v|3[[E(

τ 2
1

) − E[(Eωτ1)
2]

]
, for

P-almost every environment ω, the random variable Wn,q := (Xn − nv − Zn)/σq

√
n

converges, under the quenched law P 0
ω , to a standard Gaussian random variable, that is

P 0
ω(Wn,q > x) →n→∞

1√
2π

∫ ∞

x

e−y2/2 dy, P − a.s.

(b) Suppose s = 2 and the law of log ρ0 is non-arithmetic. Then, for some deterministic
constant σ , the random variable (Xn − nv)/σ

√
n log n converges, under the annealed

law, to a standard Gaussian random variable.
(c) Suppose s ∈ (1, 2) and the law of log ρ0 is non-arithmetic. Then, for some deterministic

constant b, the random variable (Xn − nv)/n1/s converges, under the annealed law, to a
stable random variable with parameters (s, b).

(d) Suppose s = 1 and the law of log ρ0 is non-arithmetic. Then, for some deterministic
constants a, b, and some deterministic sequence δ(n) with δ(n) ∼ an/ log n, the random
variable (Xn − δ(n))(log n)2/n1/s converges, under the annealed law, to a stable random
variable with parameters (1, b).

(e) Suppose s ∈ (0, 1) and the law of log ρ0 is non-arithmetic. Then, for some deterministic
constant b, the random variable Xn/ns converges, under the annealed law, to a stable
random variable with parameters (s, b).

In the theorem above, a stable law with parameters (s, b) is the distribution of a random
variable S with a characteristic function

E(eitS) = exp

(
−b|t |s

(
1 + i

t

|t |fs(t)

))
, t ∈ R,

where fs(t) = −tan(πs/2) for s �= 1 and f1(t) = (2/π) log t .

Remark 2.4

(a) Both the annealed and the quenched statements in part (a) carry over to a full invariance
principle, which is convergence to a Brownian motion of the process (X[nt] − ntv)/σ

√
n

(and (X[nt] − nvt − Z[nt])/σq

√
n) under the annealed law (respectively, quenched law).

The annealed statement goes back to [KKS75]; see also [Zt04] for an extension to ergodic
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environment. The quenched statement is proved in [Zt04] with a weaker notion of
convergence (convergence in probability). The version above is contained in [Pe07],
and is valid for ergodic environments satisfying appropriate mixing conditions; see also
[Gos06] for a similar result. It is worthwhile to note that the random centring Zn(ω) is
essential, and in fact the (annealed) variance of Zn(ω) is of order n.

(b) The statements (b)–(e) are due to [KKS75], and are proved using an analysis of the hitting
times τi . We refer to the regime described in this case as a sub-diffusive regime.

(c) When P is a strongly mixing environment, the parameter s has to be defined differently,
by means of the large deviations rate function for the variable n−1 ∑n

i=1 log ρi . An
extension to part (a) for such environments is straight forward, we refer to [Zt04, Bre04a,
Pe07] for several such extensions. Parts (b)–(e) are more delicate, and are not known
for general ergodic environments with good mixing properties. For a class of Markovian
environments, such a theorem holds, and the proof is contained in [MRZ04].

(d) There does not exist a quenched statement analogous to part (a) in the stable cases (b)–(e),
and the actual limit law for hitting times can be shown to depend on the environment and
on a specific subsequence of n’s chosen. A study of this phenomenon is forthcoming in
[Pe07].

2.3. Limit laws and ageing, recurrent RWRE: Sinai’s walk

When E(log ρ0) = 0, the traps alluded to in section 2.2 stop being local, and the whole
environment becomes a diffused trap. The walk spends most of its time ‘at the bottom of
the trap’, and as time evolves it is harder and harder for the RWRE to move. This is the
phenomenon of ageing, captured in the following theorem.

Theorem 2.5. There exists a random variable Bn, depending on the environment only, such
that for any η > 0,

P

(∣∣∣∣ Xn

(log n)2
− Bn

∣∣∣∣ > η

)
→

n→∞ 0.

Further, for h > 1,

lim
η→0

lim
n→∞ P

( |Xnh − Xn|
(log n)2

< η

)
= 1

h2

[
5

3
− 2

3
e−(h−1)

]
. (2.3)

The first part of theorem 2.5 is due to Sinai [Si82], with Kesten [Ke86] providing the
evaluation of the limiting law of Bn; see also [Go85]. It is actually not hard to understand the
anomalous scaling (log n)2: indeed, the time for the particle to overcome a potential barrier of
height c1 log n (refer to figure 1) is exponential in c1 log n, i.e. an appropriate c1 can be chosen
such that this time is of order n. Hence, the range of the RWRE at time n cannot be larger than
the distance in which the potential reached a height of c1 log n. Due to the scaling properties
of random walk, this distance is of order (log n)2.

The second part of theorem 2.5 is implicit in [Go85], and also follows from the analysis
of the time spent by the RWRE at ‘bottom of traps’. We refer to [LdMF99] for a detailed study
of aging in the Sinai model by renormalization techniques, and to [DGuZ01] and [Zt04] for
rigorous proofs that avoid renormalization arguments, and references. See also [Ch05] for a
non-renormalization approach to some of the results in [LdMF99]. Finally, much information
is available concerning the time spent by the walk at the most visited site (this time can be of
order n in the Sinai model); see [Sh01, HuSh00, DGPS05] and [GaS02] for the transient case.



R438 Topical Review

2.4. Tail estimates and large deviations

Another question of interest relates to the probability of seeing a-typical behaviour of the
RWRE. These probabilities turn out to depend on the measure discussed, that is whether one
considers the quenched or annealed measures.

Following Varadhan [V66], recall that a sequence of random variables Sn is said to satisfy
the large deviations principle (LDP) with speed an and rate function I if, for any measurable
set A with closure Ā and interior Ao,

−inf
x∈Ao

I (x) � lim inf
n→∞

1

an

log P(Sn ∈ A) � lim sup
n→∞

1

an

log P(Sn ∈ A) � − inf
x∈Ā

I (x). (2.4)

(Formally, the LDP holds if P(Sn ∈ A) ∼ e−nI (A) where the equivalence is measured in an
exponential scale and I (A) = infx∈A I (x).)

Cramér’s theorem [DZ98, theorem 2.2.3] states that rescaled random walk Sn/n in a
homogeneous environment with ωi = ω̄ for all i satisfies the LDP with speed n and strictly
convex rate function I (x) that vanishes only on vω̄ = 2ω̄ − 1. The situation is different for
the RWRE.

Theorem 2.6. The random variables Xn/n satisfy, for P-a.e. realization of the environment ω,
a LDP under P 0

ω with a deterministic convex rate function IP (·). Under the annealed measure
P, they satisfy a LDP with convex rate function

I (x) = inf
Q∈Me

1

(h(Q|P) + IQ(x)), (2.5)

where h(Q|P) is the specific entropy of Q with respect to P and Me
1 denotes the space of

stationary ergodic measures on �. Always, I (x) � IP (x), and both I and IP may vanish for
x ∈ [0, v], and only for such x. In particular, neither I nor IP need be strictly convex.

The rate function of the LDP for the RWRE thus differs from the case of homogeneous
environments in two important aspects: it may vanish on the whole segment [0, v], indicating
sub-exponential behaviour for the probability of slowdown, and further the rate function is in
general not strictly convex.

The quenched part of theorem 2.6 for i.i.d. environments is due to [GdH94]. We sketch in
section 3.2 an argument that gives both the quenched and annealed LDP, and refer to [CGZ00,
DGaZ04] for the general statements, proofs, and generalizations to non-i.i.d. environments.
Note that theorem 2.6 means that to create an annealed large deviation, one may first ‘modify’
the environment (at a certain exponential cost measured by the specific entropy h) and then
apply the quenched LDP in the new environment.

When I (x) vanishes for x ∈ [0, v], it means that the probability of seeing an a-typical
slowdown of the random walk decays at a speed less than exponentially. Recall from
theorem 2.1 that when P is a product measure with E log ρ0 < 0 and s ∈ (1,∞),Xn is
transient to +∞ with positive speed v, and necessarily also P(ω0 < 1/2) > 0, i.e. regions
where the walk would tend to move in a direction opposite to v are possible.

Theorem 2.7 ([DPZ96, GZ98]). Assume that P is a product measure with Eρ0 < 1 and
s ∈ (1,∞). Then, for any w ∈ [0, v), η > 0, and δ > 0 small enough,

lim
n→∞

log P
(

Xn

n
∈ (w − δ,w + δ)

)
log n

= 1 − s, (2.6)

lim inf
n→∞

1

n1−1/s+η
log P 0

ω

(
Xn

n
∈ (w − δ,w + δ)

)
= 0, P − a.s. (2.7)
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a

Figure 1. A typical realization of the potential V (·), in case u < 0 (solid) and u = 0 (dashed). In
both cases, the environment tends to confine the particle near a.

and

lim sup
n→∞

1

n1−1/s−η
log P 0

ω

(
Xn

n
∈ (w − δ,w + δ)

)
= −∞, P − a.s. (2.8)

(Extensions of theorem 2.7 to the mixing environment setup are presented in [Zt04]. There
are also precise asymptotics available in the case s = ∞ and P(ω0 = 1/2) > 0; see [PP99,
PPZ99]).

Remark 2.8. One immediately notes the difference in scaling between the annealed and
quenched slowdown estimates in theorem 2.7. These differences are due to the different
nature of traps under the annealed and quenched measures; see sections 3.2 and 3.3.

3. One-dimensional RWRE: tools

In what follows, we introduce some of the tools involved in proving theorem 2.1, and provide
additional information that can be obtained by using these tools.

3.1. Resistor networks

The transience and recurrence criterion in theorem 2.1 is proved by noting that conditioned
on the environment ω, hitting probabilities for the Markov chain Xn can be directly related to
properties of resistor networks [DoS84]. More explicitly, fix an interval [−m−,m+] encircling
the origin and for z in that interval, define

Vm−,m+,ω(z) := P z
ω({Xn} hits −m− before hitting m+).
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Define the resistance of a (non-oriented) edge (i, i + 1) by

R(i,i+1) :=
{∏i

j=0 ρj =: eV (i), i � 0∏−i−1
j=1 ρ−1

−j =: eV (i), i < 0,

with the conductance C(i,i+1) = R−1
(i,i+1). V (·) (see figure 1 for typical realizations) acts as a

random potential for the motion of the RWRE, because the probability of jumping from i to i+1
can be checked to be precisely C(i,i+1)/(C(i−1,i) +C(i,i+1)). Then, for z ∈ (m−,m+),Vm−,m+,ω(z)

equals the voltage at z across a resistor network with these conductances and voltage 1 at m−
and 0 and m+, giving

Vm−,m+,ω(z) =
∑m+

i=z+1

∏i−1
j=z+1 ρj∑m+

i=z+1

∏i−1
j=z+1 ρj +

∑z
i=−m−+1

(∏z
j=i ρ−1

j

) . (3.1)

The transience/recurrence criterion follows from (3.1), the ergodic theorem, and uniform
ellipticity by noting for example that if E log ρ0 < 0 then

lim sup
m−→∞

lim sup
m+→∞

Vm−,m+,ω(z) = 0.

We remark that the existence of a resistor network representation is equivalent to the model
being reversible, a feature that will be lost in the case d � 2.

3.2. Recursions and hitting times

The proof of the LLN in theorem 2.1 is more instructive. Suppose E log ρ0 � 0 and recall the
(P-a.s. finite) hitting times Tn = min{t � 0 : Xt = n}, and set τi = Ti − Ti−1. Suppose that
lim supn→∞ Xn/n = ∞. One checks that τi is an ergodic sequence, hence Tn/n → E(τ0), P-
a.s., which in turn implies that Xn/n → 1/E(τ0), P-a.s. But,

τ0 = 1{X1=1} + 1{X1=−1}(1 + τ ′
−1 + τ ′

0),

where τ ′
−1 (respectively, τ ′

0) denote the first hitting time of 0 (respectively, 1) for the random
walk Xn after it hits −1. Hence, taking P 0

ω expectations, and noting that
{
Ei

ω(τi)
}

i
are, P-a.s.,

either all finite or all infinite,

E0
ω(τ0) = 1

ω0
+ ρ0E

−1
ω (τ−1). (3.2)

When P is a product measure, ρ0 and E−1
ω (τ−1) are P-independent, and taking expectations

results with E(τ0) = (1 + E(ρ0))/(1 − E(ρ0)) if the right-hand side is positive and
∞ otherwise, from which (2.2) follows. The ergodic case is obtained by iterating
relation (3.2).

The hitting times Tn are also the beginning of the study of limit laws for Xn. To appreciate
this in the case of product measures P with E(log ρ0) < 0 (i.e., when the RWRE is transient
to +∞), one first observes, after some computations, that from the above recursions,

E
(
τ r

0

)
< ∞ ⇐⇒ E

(
ρr

0

)
< 1. (3.3)

We emphasize that quenched, the random variables τi are independent but not identically
distributed. Annealed, they form a stationary (but not independent) sequence, and, with
s = sup

{
r : E

(
ρr

0

)
< 1

}
, they possess all moments up to (but not including) s. When s > 2,

this and the Lindeberg–Feller criterion for the validity of the CLT, lead to the proof of part (a)
of theorem 2.3. Parts (b)–(e) in that theorem are more delicate, since to prove convergence
to a stable distribution one needs a good control on tails and in particular a regular-varying
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condition on the tails of the summands. Recursions again play a key role there, but we do not
discuss further details here.

We finally note that recursions involving the hitting times Tn are also crucial when proving
the quenched LDP in theorem 2.6. Indeed, standard large deviations arguments for which
we refer to [DZ98] show that in order to prove the quenched LDP for Tn/n, it is enough to
understand the behaviour of

lim
n→∞

1

n
log E0

ω(eλTn) = lim
n→∞

∑n
i=1 log E0

ω(eλτi )

n
= E log E0

ω(eλτ1) =: �(λ),

where the second equality is due to the ergodic theorem. But,

E0
ω(eλτ1) = ω0 eλ + (1 − ω0) eλE−1

ω (eλτ0)E0
ω(eλτ1),

where τ0 denotes the time that a random walk, started at −1, hits 0. Iterating, one gets

E0
ω(eλτ1) = ω0

e−λ − (1 − ω0)
ω−1

e−λ−(1−ω−1)···
,

leading to an expression of �(λ) as the expectation of the logarithm of this continued fraction,
and to IP (x) = supλ[λx − �(λ)] being the Legendre transform of � (technical details,
involving for example proving that the critical value of λ for which the continued fraction
converges is deterministic, are omitted in this discussion and can be found in [CGZ00]). The
annealed statement is an application of Varadhan’s lemma [DZ98, theorem 4.3.1] of large
deviations theory (a.k.a. Laplace’s method): we have

lim
n→∞

1

n
log E(eλTn) = lim

n→∞
1

n
log E

(
en· 1

n
log E0

ω(eλTn )
)

= lim
n→∞

1

n
log E

(
en· 1

n

∑n
i=1 log E0

ω(eλτi )
)

=: lim
n→∞

1

n
log E

(
e
∑n

i=1 Gi(ω)
)
,

where

Gi(ω) = log Ei−1
ω eλτi = log E0

θ i−1ω
eλτ1 ,

and θ iω denotes an i-shift of the environment ω, i.e. (θ iω)0 = ωi . Since the empirical
measures n−1 ∑n

i=1 δθiω satisfy the LDP with speed n and rate function equaling the specific
entropy h(·|P), see [DnV83], [DZ98, chapter 6], the annealed LDP and formula (2.5) follow,
after one takes care of the (non-negligible) technicalities.

3.3. Traps and slowdown estimates

As already mentioned, the unusual behaviour of one-dimensional RWRE, and in particular of
the various slowdown regimes in theorem 2.7, is best understood in terms of the existence of
traps in the environment, which are due to barriers in the potential V (·). To demonstrate the
role of traps, let us exhibit, for w = 0, a lower bound that captures the correct behaviour in the
annealed setup, and that forms the basis for the proof of the more general statement. Indeed,
{Xn � δ} ⊂ {Tnδ � n}. Fixing Rk = Rk(ω) := k−1 ∑k

i=1 log ρi , it holds that Rk satisfies a
large deviation principle with rate function J (y) = supλ

(
λy − log E

(
ρλ

0

))
, and it is not hard

to check that s = miny�0 y−1J (y). Fixing a y such that J (y)/y � s + η, and k = log n/y,
one checks that the probability that there exists in [0, δn] a point a with Rk ◦ θaω � y is at
least n1−s−η (such a point will serve as a potential barrier, like the point a in figure 1). But, the
probability that the RWRE does not cross such a segment by time n is, due to (3.1), bounded
away from 0 uniformly in n. This yields the claimed lower bound in the annealed case. In the



R442 Topical Review

quenched case, one has to work with traps of size almost k = log n/sy for which kRk � y,
which occur with probability 1 eventually, and use (3.1) to compute the probability of an
atypical slowdown inside such a trap. The fluctuations in the length of these typical traps is
the reason why the slowdown probability is believed, for P-a.e. ω, to fluctuate with n, in the
sense that

lim inf
n→∞

1

n1−1/s
log P 0

ω

(
Xn

n
∈ (−δ, δ)

)
= −∞, P − a.s., (3.4)

while it is known that

lim sup
n→∞

1

n1−1/s
log P 0

ω

(
Xn

n
∈ (−δ, δ)

)
= 0, P − a.s.

The limit (3.4) has been demonstrated rigorously in some particular cases, see [Ga02], but the
general case, which is stated as a conjecture in [GZ98], is still open.

3.4. Homogenization and the environment viewed from the point of view of the particle

We have neither discussed nor used so far a standard approach in the study of motion in
random media, namely homogenization via the study of the environment viewed from the
point of view of the particle. We now discuss this approach in the context of random walks
in random environments in dimension d = 1, where it leads to alternative proofs of the LLN
and (annealed) CLT, when v > 0. A detailed exposition appears in [Ko85, Mo94, Sz04] and
[Zt04].

As above, we let θ : � → � denote the spatial shift acting on the environment. Set
ω̄(n) = θXnω. It is immediate to check that ω̄n is a Markov chain with state space �. Suppose
now that P is ergodic and v > 0, and define the probability measure Q on ω by the equality,
valid for any measurable B ⊂ �,

Q(B) = EP

(
T1−1∑
i=1

1ω̄(i)∈B

)
, Q̄(B) = Q(B)

Q(ω)
= Q(B)

EP(T1)
.

One then checks that Q̄ is an invariant measure for the Markov chain ω̄(n), and that
dQ̄/dP ∈ (0,∞). Further, due to uniform ellipticity, Q̄ is actually ergodic, and hence
the ergodic theorem implies that un := n−1 ∑n

i=1(2ω̄(i)0 − 1) converges to a deterministic
limit v̄ for Q̄ almost every initial condition ω̄(0) = ω, and hence, for P almost every such
initial condition. Since Mn := Xn − nun is a martingale with bounded increments, it follows
that Xn/n → v̄, P -almost surely, and hence v̄ = v and the LLN in theorem 2.1 for s > 1
follows.

Standard Martingale arguments also show that Mn/
√

n satisfies the CLT, however it is not
easy to deduce from this a CLT for (Xn − nv)/

√
n due to the fluctuations of

√
nun. Instead,

the homogenization proof of the (annealed) CLT, for i.i.d. and certain mixing environments,
involves the construction of a corrector, or harmonic coordinates. This proceeds as follows.
One seeks a function h(x, ω) such that Mn = Xn −nv +h(Xn, ω) is a martingale (with respect
to the natural filtration of (Xn), and the measure P 0

ω). Such an h can be computed, and in fact,
with (x, ω) = h(x + 1, ω) − h(x, ω), it holds that  satisfies the equation

(x, ω) = −2ωx − 1 − v

ωx

+ ρx(x − 1, ω), (3.5)

which can be solved explicitly. The normalized increasing process n−1 ∑n
i=1 E((Mi+1 −

Mi)
2|Xj, j � i) converges by the same argument that gave the LLN. Therefore, Mn/

√
n

satisfies the CLT under the quenched measure P 0
ω , with a deterministic limiting variance σ 2

1 ,
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and an additional argument shows that |h(Xn, ω) − h(nv, ω)| → 0 when s > 2 and mixing
conditions are satisfied by the environment, h(nv, ω)/

√
n converges in distribution, under P,

to a Gaussian variable (which, since σ 2
1 is deterministic under the quenched measure P 0

ω , is
asymptotically independent of Mn/

√
n). Combining these two facts yields the (annealed) CLT

for (Xn − nv)/
√

n, i.e. the annealed statement in part (a) of theorem 2.3.

4. Multi-dimensional RWRE–non-perturbative regime

We turn our attention to RWRE in the lattice Z
d with d > 1. Unless stated otherwise explicitly,

we only consider in the following measures P that are i.i.d. and uniformly elliptic. While the
case of d = 1 serves as motivation, the lack of reversibility means that there is no natural
analogue of the random potential V (·).

4.1. Ergodic properties and a 0 − 1 law

A natural starting point for the discussion of ergodic properties of the RWRE (Xn) would have
been an analogue of theorem 2.1. Unfortunately, obtaining such a statement has been a major
challenge since the early 1980s, and is still open. To explain the challenge, we need to digress
and introduce a certain conjectured 0 − 1 law.

Fix � ∈ Sd−1, i.e. � is a unit vector in R
d . Define the events

A+
� = { lim

n→∞ Xn · � = ∞}, A−
� = { lim

n→∞ Xn · � = −∞}.
The proof of the following proposition, due to Kalikow [Ka81], is easy and is sketched in
section 5.1.

Proposition 4.1. Assume P is i.i.d. and elliptic, i.e. P(ω(0, e) > 0) = 1 for all e with |e| = 1,
and that � ∈ Sd−1. Then, P

(
A+

� ∪ A−
�

) ∈ {0, 1}.

Note that for d = 1, theorem 2.1 implies that P(A�) ∈ {0, 1}. If one ever hopes to obtain
a LLN, then one should be able to prove the following.

Conjecture 4.2 (Kalikow). Assume P is i.i.d. and uniformly elliptic, and that � ∈ Sd−1. Then,
P
(
A+

�

) ∈ {0, 1}.

Efforts to prove conjecture 4.2 are ongoing. The following summarizes its status at the
current time.

Theorem 4.3

(a) Conjecture 4.2 holds true for d = 1, 2 and elliptic i.i.d. environments.
(b) There exist ergodic environments that are elliptic (for d = 2) and even uniformly elliptic

and mixing (for d � 3), for which a deterministic direction � ∈ Sd−1 exists such that
P 0

ω(A�) ∈ (0, 1), for P-almost every ω.

As mentioned above, part (a) of theorem 4.3 for d = 1 is a direct consequence of the
LLN, theorem 2.1. Parts (a) and (b) of theorem 4.3 for d = 2 are due to [ZrM01], while part
(b) for d � 3 is due to [BrZZ06]. We provide a sketch of the proofs in section 5.1.2.

As it turns out, the validity of conjecture 4.2 is the only obstruction to a LLN. In fact, the
following holds.
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Theorem 4.4. Assume P is i.i.d. and uniformly elliptic.

(a) Fix � ∈ Sd−1. Then,

lim
n→∞

Xn · �

n
= v+1A+

�
+ v−1A−

�
, P − a.s.. (4.1)

In particular, when d = 2 the LLN holds true.
(b) P-almost surely, there are at most two possible limit points, denoted by v1, v2, for the

sequence Xn/n. Further, v1, v2 are deterministic, and if v1 �= v2 then there exists a
constant a � 0 such that v2 = −av1.

(c) When d � 5, if v1 �= v2 then at least one of v1 and v2 equals 0.

Part (a) of theorem 4.4 is due to [SzZr99] and [Zr02]. Part (b) is proved explicitly in
[V04] and [Be06]. Part (c) is due to [Be06]. Of course, part (a) of the theorem implies that if
conjecture 4.2 is true, then the LLN holds for P i.i.d. and uniformly elliptic.

The proof of theorem 4.4, and of many of the other results in this section, uses the
machinery of regeneration times, introduced in [SzZr99]. Roughly, a random time k is a
regeneration time relative to a direction � ∈ Sd−1 if Xk · � � Xn · � for all k � n but
Xk · � < Xn · � for all k < n (i.e., Xn · � sets a record at time k, and never moves backward
from that record). It will turn out that the sequence of inter-regeneration times and inter-
regeneration distances is an i.i.d. sequence under the annealed measure P, if P is i.i.d.; see
lemma 5.1. Once such an i.i.d. sequence has been identified, ergodic arguments yield the
LLN, and the CLT involves studying tail behaviour of the regeneration times. We provide
further details in section 5.1.4.

We note that so far, there is no known criterion that allows one to decide the question
of transience or recurrence for RWRE in dimension d � 2, although one certainly expect
transience as soon as d � 3, for i.i.d. uniformally elliptic environments.

4.2. Ballistic behaviour and Sznitman’s conditions

Lacking an explicit expression for the speed of the RWRE for d � 2, a natural goal is to
identify a large family of models for which Xn/n → v �= 0. RWREs that satisfy such a
relation are called ballistic. As we saw in theorem 2.1, when d = 1 and Xn → ∞, and the
environment is i.i.d., the RWRE is ballistic if and only if Eρ0 < 1.

Define d0 := ∑
[ω(0, ei) − ω(0,−ei)]ei as the drift at the origin. Of course, if there

exists a direction � ∈ Sd−1 such that d0 · � > 0 for P-a.e. environment, a simple martingale
argument shows that Xn/n → v with v ·� > 0. However, as we show below (see remark 4.15),
one should not confuse the condition Ed0 �= 0 with ballistic behaviour, as it neither guarantees
nor is sufficient to ensure a limiting nonzero speed.

Following Zerner [Zr98], we call such environments for which there exists a deterministic
� such that d0 · � > 0, P -a.s., non-nestling. We will be mainly interested in nestling
environments, that is environments in which the origin belongs to the closed convex hull
of the support of d0 (the source for the name lies in the fact that when the walk is nestling,
it is possible to construct localized regions where the walk return many times, leading to the
mental picture of a bird that keeps returning to a nest). Such regions can serve as traps and
slow down the particle. However, unlike d = 1, all attempts to build explicit traps that slow
down the particle to a sub-diffusive scale quickly fail. One thus suspects that a good control
of trapping properties will lead to an analysis of the RWRE.

With this motivation in mind, we follow Sznitman in introducing some condition on the
environment that will eventually lead to a good understanding of the ballistic regime. Fix a
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direction � ∈ Sd−1, and for b > 0, define the region U�,b,L = {x ∈ Z
d : x · � ∈ (−bL,L)}.

Let T�,b,L = min{n > 0 : Xn �∈ U�,b,L}.
Definition 4.5. Let γ ∈ (0, 1) be given. Then, P satisfies condition Tγ relative to � if for all
�′ in some neighbourhood of �, and all b > 0,

lim sup
L→∞

1

Lγ
log P

(
XT�,b,L

· � < 0
)

< 0. (4.2)

P satisfies condition T ′ relative to � if it satisfies condition Tγ relative to � for all γ ∈ (0, 1).
It satisfies condition T relative to � if it satisfies condition T1 relative to �.

In words, condition T relative to � holds if the exit from a slab that is contained between
two hyperplanes perpendicular to �, located respectively at distance +L in the � direction and
−bL in the opposite direction, occurs through the ‘backward’ direction with probability that is
exponentially small in L. Condition T ′ relaxes the exponential decay to ‘almost’ exponential
decay (there is an alternative description of condition T ′ in terms of regeneration distances;
see proposition 5.3). The power of condition T ′ is the following.

Theorem 4.6 (Sznitman). Assume P is i.i.d. and uniformly elliptic, and that condition T ′

relative to some direction � holds. Then, the process (Xn) is ballistic, i.e. Xn/n → v �= 0
for some deterministic v with v · � > 0, and there is a deterministic σ 2 > 0 such that, under
the annealed measure P, (Xn − nv)/σ

√
n converges in distribution to a standard Gaussian

random variable.

(The convergence in distribution in theorem 4.6 actually extends to an invariance
principle.)

A simple martingale argument implies that condition T (and hence T ′) holds for a certain
direction � when the environment is non-nestling. We next describe sufficient conditions that
imply condition T ′ for certain nestling environments.

4.2.1. Kalikow’s approach. Fix a strict finite subset U of Z
d that contains the origin, and let τU

denote the first exit time from U. Define an auxiliary Markov chain on U and its boundary by

PU(x, x + e) = E
[∑τU

n=0 1Xn=xω(x, x + e)
]

E
[∑τU

n=0 1Xn=x

] , x ∈ U,

with the walk stopped when exiting U (PU is a transition kernel which weights the law of
ω(x, x + e) according to the number of visits to x before time τU ). It is an easy exercise to
check that the exit law from U are the same under the Markov chain generated by PU and
under the annealed measure P. In view of that, the following condition may be natural.

Definition 4.7 (Kalikow). We say that Kalikow’s condition relative to � is satisfied if

ε� := inf
U,x∈U

∑
|e|=1

PU(x, x + e)(� · e) > 0. (4.3)

Theorem 4.8

(a) Assume P is i.i.d. and uniformly elliptic, with ellipticity constant κ . Assume Kalikow’s
condition relative to � holds. Then, so does condition T relative to �.

(b) Assume E((d0 · �)+) � κ−1E((d0 · �)−). Then, Kalikow’s condition relative to � holds.

Kalikow’s condition was introduced by him in [Ka81] as a way to prove the 0 − 1 law
for a (nontrivial) class of examples. For d = 1, it is easy to check that it is equivalent to
ballistic behaviour, i.e. to s > 1. Kalikow’s condition was used in [SzZr99] in order to analyse
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regeneration times and prove a LLN, and in [Sz00] in order to prove a CLT. It is an easy
martingale argument to verify that it implies condition T relative to �.

4.2.2. Sznitman’s effective criterion for condition T ′. The verification of condition T ′ seems
a priori not obvious. It is thus extraordinary that an effective criterion for checking it exists.

Let � ∈ Sd−1 be given. Let O : R
d → R

d denote a rotation with Oe1 = �. Let
B = O((−(L − 2), L + 2) × (−L̃, L̃)d−1) denote a box with sides 2L + 4 (in the � direction)
and 2L̃ (in all other directions), symmetric with respect to reflections around 0. Let ∂+B

denote the part of the boundary of B consisting of points x with x ·� � L+ 2 and |Oei ·x| � L̃,
for all i � 2 (∂+B consists of those points that are on the part of the boundary that belongs
to the hyperplane that is both perpendicular to � and has positive � displacement). Finally, let
ρB = ρB(ω) := P 0

ω

(
XTB

�∈ ∂+B
)/

P 0
ω

(
XTB

∈ ∂+B
)
.

Theorem 4.9. There exist constants c1 = c1(d), c2 = c2(d) > 1 such that if P is i.i.d. and
uniformly elliptic, and � ∈ Sd−1, then condition T ′ relative to � is equivalent to

inf
B∈Bc1 ,c2
0<α�1

{
c1|log κ|3(d−1)(L̃)d−1L3(d−1)+1E

(
ρα

B

)}
< 1,

where Bc1,c2 denotes the collections of boxes B as above with L � c2 and L̃ ∈ [3
√

d, L3].

Theorem 4.9 appears in [Sz02], and is used in [Sz03a] to construct an example of a ballistic
RWRE that does not satisfy Kalikow’s condition but does satisfy T ′, relative to some �. It is
also useful when discussing environments that are small perturbations of simple random walk;
see section 6.1.

4.2.3. Sznitman’s conjecture. As we discuss in proposition 5.3, condition T ′ is equivalent to
certain exponential moments on the maximal distance from the origin the RWRE has achieved
before time τ1. In the course of proving theorem 4.9, Sznitman actually proves that condition
Tγ relative to � with any γ ∈ (1/2, 1) implies condition T ′ relative to the same �. This led
him to the following conjecture; see [Sz02]:

Conjecture 4.10 (Sznitman). Assume P is uniformly elliptic and i.i.d. Then, condition T
relative to � is implied by condition Tγ relative to � for any γ ∈ (0, 1).

It is also reasonable to expect (‘plausible’, in the language of [Sz02]) that in addition,
ballistic behaviour with speed v implies condition T relative to � = v/|v|, for d > 1.

For d = 1, and i.i.d. environment, all the conditions Tγ with respect to the direction � = 1
are equivalent to E log ρ0 < 0; see [Sz99]. Hence, conjecture 4.10 holds when d = 1 (note
that this is not the case for the conclusions concerning ballistic behaviour, which do not hold
true for d = 1).

We note in passing that in the ballistic situation, some information on the environment
viewed from the point of view of the particle can be deduced. We refer to [BoS02] and [RA03]
for details.

4.3. Large deviations, quenched and annealed

In dimension d = 1, the large deviations for the sequence Xn/n were obtained by considering
hitting times. While this approach can be partially extended to obtain quenched LDPs for
some RWREs (see [Zr98]), its scope is limited, and in particular it does not apply to all i.i.d.
measures P, nor to an annealed LDP.

A different approach was taken by Varadhan [V04], who obtained the following.
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Theorem 4.11. Assume d � 2.

(a) Assume P is a uniformly elliptic, ergodic measure. Then, for P-a.e. environment ω, the
sequence of variables Xn/n under P 0

ω satisfies the (quenched) LDP with speed n and
deterministic, convex rate function I.

(b) Assume further that P is i.i.d. Then, the sequence of random variables Xn/n satisfies,
under P, the (annealed) LDP with speed n and convex rate function I.

(c) The rate functions I and I possess the same zero set. Further, this (convex) set is either a
single point or a segment of a line.

As for dimension d = 1, both I and I are in general not strictly convex.
The quenched statement (part (a)) is an application of the ergodic sub-additive theorem

[Li85], noting that

P 0
ω(Xn+m = [(n + m)u]) � P 0

ω(Xn = [nu])P [nu]
ω (Xm = [(n + m)u])

= P 0
ω(Xn = [nu])P 0

θ [nu]ω
(Xm = [(n + m)u] − [nu]),

which together with the ellipticity that is used to smooth the integer effects above, leads
to the quenched LDP. The annealed LDP is obtained by noting that the process of histories of
the walk is a Markov chain, and applying the general large deviations theory for such chains.
The details are rather involved and we do not bring them here, referring the reader to [V04].

Remark 4.12

(a) In the multi-dimensional case, a formula like (2.5), with its intuitive description of the
way an annealed deviation is obtained, is not available, since the modification of big
chunks of the environment has probability which decays exponentially in volume order,
instead of n.

(b) An alternative description of the quenched rate function, that is more instructive than the
sub-additivity argument, has been developed for the related model of diffusions in random
environments in [KRV06].

(c) Part (b) of theorem 4.11 was extended to certain mixing environments in [RA04].

As for d = 1, it is natural to study slowdown estimates in the region where the rate
functions vanish, and in particular to study the probability of slowdown. This study is closely
related to the analysis of condition T ′. For nestling environments, it is easy to exhibit a lower
bound, based on traps as in dimension 1, that shows that the slowdown probability decays
slower than exponentially in n, and the challenge is to prove matching upper bounds. For P
satisfying Kalikow’s condition, the best currently available results are in [Sz99] and [Sz00].

4.4. Non-ballistic results

The analysis of RWRE for environments that do not exhibit ballistic behaviour is still limited.
Still, two important classes of models have been identified, for which the analysis could be
carried out. We sketch those below.

4.4.1. Balanced environment. A particular class of environments worth mentioning is the
class of balanced environments, where ω(0, ei) = ω(0,−ei) for all i, in which case d0 = 0.
In that case, Xn itself is a martingale with bounded increments, and thus Xn/n → 0, P-a.s.
Much more can be said.

Theorem 4.13. Assume P is stationary and ergodic, balanced and uniformly elliptic. Then
Xn/n → 0, P-a.s., and there exists a deterministic σ 2 > 0 such that Xn/σ

√
n converges in
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distribution (under the annealed measure P) to a Gaussian random variables. Further, Xn is
recurrent if d = 2 and transient if d � 3.

Theorem 4.13 is essentially due to [L85] (the recurrence statement is due to Kesten, and can
be found in [Zt04]). It is one of the few instances where ‘classical’ homogenization can be
applied to the study of multi-dimensional RWRE. See section 5.2 for some further details.

4.4.2. RWRE with deterministic components. A key to the analysis of the ballistic case is
the existence of certain regeneration times. Those were used to create an i.i.d. sequence under
the measure P.

In the non-ballistic case, regeneration times as defined above do not exist. However, if
the dimension of the space is large enough and some of the components are deterministic, an
alternative to regeneration times can be found, based on cut times for simple random walk.
We postpone to section 5.3 the precise definition of cut times and the sketch of the proof of
the following result, which is due to [BoSZ03].

Theorem 4.14. Assume d = d1 + d2 with d1 � 5. Assume P is a uniformly elliptic i.i.d.
measure, with ω(x, x + e) = q(e) for e = ±ei, i = 1, . . . , d1 and a deterministic q. Then,
there exists a deterministic constant v such that Xn/n → v, P-a.s. Further, if d1 � 13, then
the quenched CLT holds, i.e. there exists a deterministic σ 2 > 0 such that (Xn − nv)/σ

√
n

converges in distribution to a standard Gaussian variable.

Remark 4.15

(a) The convergence in distribution in theorem 4.14 extends to a full invariance principle.
(b) An amusing consequence of theorem 4.14, is that for d > 5, one may construct P i.i.d.

and uniformly elliptic such that E(d0 · �) < 0 but the resulting RWRE is ballistic with
v · � > 0. Recall that this is impossible in dimension d = 1; see remark 2.2(b). Also,
for d > 6, one may construct for every ε > 0 a P i.i.d. and uniformly elliptic such that
|ω(x, x + e) − 1/2d| < ε,E(d0) �= 0, but Xn/n → 0, P-a.s., or such that E(d0) = 0 but
the walk is ballistic. We refer to [BoSZ03] for the construction.

5. Multi-dimensional RWRE: non-perturbative tools

We present in this section those tools that are used in proving the results in section 4. Unless
otherwise stated, we assume that P is i.i.d. and uniformly elliptic.

5.1. Regeneration times

5.1.1. Definitions and a proof of proposition 4.1. We begin by introducing the notion of
regeneration times with respect to a direction �. In what follows, we let Zn = Xn · �. Call
a time k fresh relative to � if Zk > Zn,∀n < k. A fresh time k is called a regeneration time
relative to � if Zn � Zk for all n � k. The sequence of regeneration times is denoted by τi ;
see figure 2 for an illustration of the definition of regeneration times.

We can now provide a sketch of the proof of proposition 4.1: assume that P
(
A+

�

)
> 0.

Then, by the Markov property and stationarity of the environment, each fresh time relative to
� has a uniformly bounded away from zero P-probability to be a regeneration time relative to
� . Thus, if P

(
A+

�

)
> 0 then the existence of infinitely many fresh times relative to � implies

that A+
� occurs. On the other hand, if P

(
A+

�

) = 0 then for every z ∈ Z
d with z · � > −K , and

every K,

P z
ω(there exists n > 0 with Zn < −K) = 1, P − a.s.
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Figure 2. The projection of the path Xt · � (horizontal axis) versus time t (vertical axis), and the
first two regeneration times τ1 and τ2.

Similarly, if P(A−
� ) > 0 then the existence of infinitely many fresh times relative to −� implies

that A−
� occurs, while P(A−

� ) = 0 implies that for every z ∈ Z
d with z · � < K , and every K,

P z
ω(there exists n > 0 with Zn > K) = 1, P − a.s.

Therefore, if P(A−
� ) = 0 then there will be infinitely many fresh times relative to �, implying

that if P
(
A+

�

)
> 0 then P

(
A+

�

) = 1. Hence, P(A−
� ) = 0 implies P

(
A+

�

) ∈ {0, 1}, and
consequently P

(
A+

� ∪ A−
�

) ∈ {0, 1} in this case. The same argument applies to P
(
A+

�

) = 0.
Finally, if P

(
A+

�

)
P(A−

� ) > 0, then either there are infinitely many fresh points relative to �

(and consequently, A+
� occurs), or there are infinitely many fresh points relative to −� (and

consequently, A−
� occurs). Therefore, P

(
A+

�

)
P(A−

� ) > 0 implies P
(
A+

� ∪ A−
�

) = 1.

5.1.2. Independence properties and the LLN. The most important feature of regeneration
times is their independence properties. In what follows, we fix a direction �, and say simply
that k is a regeneration time if it is a regeneration time relative to �. Let τi, i � 1 denote the
sequence of regeneration times (a consequence of the argument above is that if τ1 < ∞ then,
P-a.s., there are infinitely many regeneration times). Let D = min{n > 0 : Xn · � < 0}. The
following lemma describes the independence properties of regeneration times.

Lemma 5.1. Assume P is i.i.d., with P(A�) > 0. Then, the following hold.

(a) The sequence of random vectors

Vi := {
(τi+1 − τi),

(
Xn+τi

− Xτi

)
0�n�τi+1

, (ω(x, ·))x:x·�∈[Xτi
·�,Xτi+1 ·�)

}
, i � 1

is, under the measure P(·|A+
� ), an i.i.d. sequence.

(b) Under the measure P, the law of Vi , conditioned on {A+
� }, is identical to the law of{

τ1, (Xn)n�τ1 , (ω(x, ·))x:x·�∈[0,Xτ1 ·�)
}

conditioned on the event {D = ∞}.
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In words, the path of the RWRE between regeneration times, as well as the environment
determined by hyperplanes perpendicular to � visited between regeneration times, form an
i.i.d. sequence under the event A+

� .
Lemma 5.1 may look at first surprising, since the τi’s, being forward looking, are not

stopping times. However, it turns out that all the information they convey is simply the fact
that the starting time is a regeneration time. The formal proof is obtained by making explicit
the last statement, we refer to [SzZr99] or [Zt04] for details.

If E(τ1|D = ∞) < ∞, then also E(|Xτ1 ||D = ∞) < ∞, and lemma 5.1 together with
an interpolation argument shows immediately that, with

v = E(Xτ1 |D = ∞)

E(τ1|D = ∞)
�= 0, (5.1)

it holds that

P

(
Xn

n
→n→∞ v|A+

�

)
= 1.

On the other hand, if E(τ1|D = ∞) = ∞, a renewal argument whose details can be found in
[Zr98] shows that necessarily, Xn/n → 0 on the event A+

� . Combined together, these facts
prove part (a) of theorem 4.4.

5.1.3. The 0 − 1 law. As mentioned in theorem 4.3, when d = 2 and P is i.i.d. and elliptic,
it holds that P

(
A+

�

) ∈ {0, 1}. The proof, due to [ZrM01], proceeds as follows. Consider the
function v(x) = P x

ω (limn→∞ Xn · � = ∞). Then, a martingale argument shows that v(Xn)

converges to 1 on A+
� . Now, assume that P

(
A+

�

)
P(A−

� ) > 0. Then, a RWRE started at the
origin has a positive probability to end up on the event A+

� , while a RWRE started any point
(L, y) ∈ Z

2 has a positive probability to end up on the event A−
� . By choosing properly the

point y, one can ensure that with positive probability that does not depend on L, the two paths
cross (here is where d = 2 enters: in higher dimension, this needs not be true). But at the
point x they cross, it is impossible that v(x) is close to 1, contradicting the convergence of
v(Xn) to 1 on A+

� .
We digress next and explain the construction of counter examples to the 0-1 law, for

non i.i.d. environments. We begin by considering d = 2, following [ZrM01]. Consider the
lattice Z

2 and its sub-lattice 2Z
2. Connect each vertex in 2Z

2 to either its northern or eastern
neighbour in that lattice, in an i.i.d., equally likely fashion. Extend this to a graph on Z

2 in
an obvious manner (thus, if (0, 0) is connected to (0, 2) in the sublattice 2Z

2, then (0, 0) is
connected to (0, 1) and (0, 1) is connected to (0, 2) in the lattice Z

2). The resulting graph
is a tree T (marked by solid line in figure 3), and it is easy to check that almost surely, it
has one connected component, and each vertex x = (x1, x2) on the tree is connected to only
finitely many vertices y = (y1, y2) with both y1 � x1 and y2 � x2 (such vertices are called
descendants of x). Let l(x) denote the distance (on T ) between x and its farthest descendant.
Let a(x) denote the ancestor of x, which is the unique vertex connected to x that has x as
descendant. Define ω(x, a(x)) = 1 − 1/l(x)2 and ω(x, e) = 1/3l(x)2 for e �= a(x). Finally,
note that T defines naturally a dual tree T ′ with vertices in Z

2, which ‘points’ in the opposite
direction (this tree is constructed from vertices in 2Z

d + (1, 1), that start by being connected
either to their southern or western neighbour). The definition of descendant y = (y1, y2) of
x = (x1, x2) is that y1 � x1 and y2 � x2. One defines l(x) on T ′ in a similar fashion to T .
Finally, to make the construction stationary, one applies a random unit shift of the lattice Z

2

along one of the coordinate axes, with equal probability among the four possible shifts.
Let � = (1, 1)/

√
2. Since l(Xn+1) � l(Xn) + 1 if Xn+1 is an ancestor of Xn, the Borel–

Cantelli lemma implies that a RWRE started on T has a positive probability to stay on T
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Figure 3. The trees T (solid line) and T ′ (dashed line).

forever and advance at each step towards an ancestor. In particular, on this event of positive
probability, Xn · � → ∞ (and in fact, the motion is ballistic). On the other hand, if the RWRE
starts on T ′ then it has a positive probability to satisfy Xn · � → −∞. Since the RWRE also
has, by ellipticity, a positive probability to move from T to T ′ and vice versa, we conclude
that P

(
A+

�

)
P(A−

� ) > 0. Thus, the 0-1 law cannot hold true for such an environment.
The construction described above yields a P which is neither mixing nor uniformly elliptic.

For d � 3, both these points can be overcome, essentially by adding ‘insulation’ around the
tree T and moving the tree T ′ away from T (the higher dimension is needed to allow for enough
space for such separation). This leads to part (b) of theorem 4.3. The resulting environment,
besides being uniformly elliptic, is polynomially mixing, i.e. exhibits polynomial decay of
correlations (which is however not summable). The details of the construction can be found
in [BrZZ06].

5.1.4. Ballistic behaviour: moment bounds and condition T ′. A consequence of lemma 5.1
is that if P

(
A+

�

)
holds true and also E(τ1|D = ∞) < ∞, then by decomposing Xn and n

into a sum of i.i.d. random variables (the regeneration increments Xτi+1 − Xτi
and the time

increments τi+1 − τi) and a small remainder, it is easy to show that ballistic behaviour occurs.
Further, as soon as also E

(
τ 2

1

∣∣D = ∞)
< ∞, then an annealed CLT holds true. Hence, the

key to both the ballistic behaviour and the CLT lies in obtaining good moment bounds on the
annealed law of τ1 conditioned on the event D = ∞.

In [SzZr99], the authors proved under Kalikow’s condition (4.3) that E(τ1|D = ∞) < ∞.
For doing so, they first observed that under (4.3),

E
(
XTU

· �
)

� ε�E(TU), (5.2)

allowing one to reduce the issue of tail estimates on τ1 to the question of tail estimates on
the displacement Xτ1 · �, conditioned on D = ∞. But, since every fresh point has a positive
probability (under (4.3)) to be a regeneration point, and the backtrack distance for the RWRE
has exponential moments, one concludes that Xτ1 · � also possesses exponential moments.
From this the conclusion follows.
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Relation (5.2) cannot be directly extended to obtain higher moment controls on τ1, and
hence is not directly useful in proving the CLT. A breakthrough came with the work of
Sznitman [Sz00], who showed how the exponential moment estimates on

∣∣Xτ2 − Xτ1

∣∣ can be
translated into estimates on τ1, as follows.

Lemma 5.2. Assume d � 2, P is uniformly elliptic and i.i.d., and Kalikow’s condition (4.3)
holds. Then, there exists some α > 1 such that for all u large,

P(τ1 > u) � e−(log u)α . (5.3)

In particular, all moments of τ1 are finite.

Recall that when d = 1, Kalikow’s condition is equivalent to the condition s > 1.
Contrasting lemma 5.2 with (3.3) shows that lemma 5.2 is not true for d = 1, which is another
manifestation of the intuition that traps are weaker in high dimension than in low dimension.

Recall the variables T�,b,L introduced above definition 4.5. The proof of lemma 5.2
follows rather directly from Kalikow’s condition, the ellipticity assumption and the estimate.

There exist β < 1 and ξ > 1 such that

lim sup
L→∞

1

Lξ
log P

(
P 0

ω

(
XT�,1,L

· � � L
)

� e−cLβ )
< 0,

(5.4)

The estimate in (5.4) is where most of the work is invested. It essentially gives an upper
bound on the probability that a piece of the environment has strong blocking properties for the
RWRE. Its proof is built on constructing ‘channels’ along which exit can occur (here, d � 2
is used), and arguing that if (5.4) were not true, then all these channels would have to block
the walk, which is not possible since the channels are independent and Kalikow’s condition
gives a lower bound on the probability of a channel to be ‘non-blocking’. We refer for details
to [Sz00] and the expositions in [Sz04] and [Zt04].

Having discussed Kalikow’s condition, we turn to Condition T ′. Its usefulness is in the
following result from [Sz03a].

Proposition 5.3. Let d � 2, � ∈ Sd−1, and γ ∈ (0, 1]. The following are equivalent.

(a) Condition Tγ holds.
(b) P

(
A+

�

) = 1 and, with X∗ := sup0�n�τ1
|Xn|, there exists a c > 0 such that

E(exp(c(X∗)γ )) < ∞.

The proof is detailed in [Sz03a]; see also the exposition in [Sz04]. From part (b) of
proposition 5.3, tail estimates on τ1 of the form (5.3) follow, by a route similar to that
described above when discussing Kalikow’s condition. We omit further details.

5.1.5. Extensions to mixing environments. When the law P on the environment is not i.i.d.,
lemma 5.1 fails to hold, and the usefulness of regeneration times is seriously limited. If the
environment has a finite range of dependence (that is, there exists a K such that if A ⊂ Z

d

and B ⊂ Z
d satisfy d(A,B) > K , then the collections (ω(x, ·))x∈A and (ω(x, ·))x∈B are

independent), one uses ellipticity to modify the definition of regeneration times and preserve
independence. We refer to [Zt04] for details; see also [She02] for related results. On the other
hand, if the environment only satisfies a strong mixing condition but not finite range
dependence, this cannot be done. Still, one may define modified regeneration times with
good enough mixing conditions that ensure that both the LLN and the CLT hold, under a
uniform Kalikow-type condition. We refer to [CZ04] and [CZ05] for details, and to [RA03]
for an alternative approach leading to the LLN for certain mixing environments, which relies
on the environment viewed from the point of view of the particle.
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5.2. Homogenization in balanced environments

The proof of theorem 4.13 follows the homogenization approach discussed in section 3.4
for d = 1. However, unlike the case of d = 1, here an explicit invariant measure viewed
from the point of view of the particle cannot be found. Instead, one proves its existence
and absolute continuity with respect to P from a priori estimates on invariant measures
for periodized environments with large period, adapting to the discrete setup arguments of
[PaV82]. Specifically, let Lω denote the operator

Lωu(x) =
d∑

i=1

ω(x, x + ei)[u(x + ei) + u(x − ei) − 2u(x)].

For a bounded domain E ⊂ Z
d , set

‖u‖E,d =
(

1

|E|
∑
x∈E

|u(x)|d
)1/d

.

One then has the following lemma.

Lemma 5.4. There exists a constant C = C(ε, d) such that

(a) (Maximum principle). For any E ⊂ Z
d bounded, any functions u and g such that

Lωu(x) � −g(x), x ∈ E

satisfy

max
x∈E

u(x) � C diam(E)|E|1/d‖g‖E,d + max
x∈∂E

u+(x).

(b) (Harnack inequality) Any function u � 0 such that

Lωu(x) = 0, x ∈ DR(x0), (5.5)

satisfies

1

C
u(x0) � u(x) � Cu(x0), x ∈ DR/2(x0).

The estimates in lemma 5.4 are an adaptation to the discrete setup of the Alexandroff–
Bakelman–Pucci estimates from PDE theory, and are developed in [L85] and [KuT90], see
also [Zt04]. They are useful in showing that the sequence of invariant measures of the
environment viewed from the point of view of the particle satisfies a (uniform in the period)
L1+1/(d−1) estimate, from which the existence of an invariant measure in the original random
environment follows.

5.3. Cut times

We sketch the proof of theorem 4.14. Set S = ∑d1
i=1(q(ei) + q(−ei)), let {Rn}n∈Z denote a

(biased) simple random walk in Z
d1 with transition probabilities q/S, and fix a sequence of

independent Bernoulli random variable with P(I0 = 1) = S, letting Un = ∑n−1
i=0 Ii . Denote

by X1
n the first d1 components of Xn and by X2

n the remaining components. Then, for every
realization ω, the RWRE Xn can be constructed as the Markov chain with X1

n = RUn
and

transition probabilities

P
0
ω

(
X2

n+1 = z|Xn

) =
{

1, X2
n = z, In = 1

ω
(
Xn,

(
X1

n, z
))/

(1 − S), In = 0.
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Figure 4. Cut times for the random walk Rn.

Introduce now, for the walk Rn, cut times ci as those times where the past and future of the
path Rn do not intersect; see figure 4. More precisely, with PI = {Xn}n∈I ,

c1 = min{t � 0 : P(−∞,t) ∩ P[t,∞) = ∅}, ci+1 = min{t > ci : P(−∞,t) ∩ P[t,∞) = ∅}.
The cut-times sequence depends on the ordinary random walk Rn only. In particular, because
that walk evolves in Z

d1 with d1 � 5, it follows from a Green function computation, as in
[ET60], that there are infinitely many cut points, and moreover that they have a positive density.
(We note in passing that due to the special role played by the origin, the differences (ci+1 − ci)

are not stationary. However, they can be rendered stationary by making an appropriate
change of measure, without modifying the asymptotic properties of the sequence.) The main
observation is that the increments X2

ci+1
− X2

ci
depend on disjoint parts of the environment.

Therefore, conditioned on {Rn, In}, they are independent (with respect to the annealed measure
P). From here, the statement of theorem 4.14 is not too far.

5.4. From annealed to quenched CLT

Let Bn
· = (X[·n] − [·n]v)/

√
n and let βn

· denote the polygonal interpolation of (k/n) → Bn
k/n.

Let C([0, T ], R
d) be endowed with the distance dT (f, g) = sups�T |f (s) − g(s)| ∧ 1. The

following intuitively clear theorem, which is proved in [BoS02], is very useful in passing from
annealed to quenched CLT’s, especially in high dimension.

Theorem 5.5. Suppose Bn
· satisfies the annealed invariance principle. Assume that for any

T > 0, any bounded Lipschitz function F on C([0, T ], R
d) (equipped with the distance dT )

and all b ∈ (1, 2],∑
m

Var
(
Eω

(
F

(
β[bm]

·
)))

< ∞.

Then Bn
· satisfies the quenched invariance principle, i.e. for P-a.e. ω, Bn

· converges in
distribution under Pω to a deterministic scalar multiple of Brownian motion.

Theorem 5.5 was used in proving the quenched statements in theorem 4.14.

6. Multi-dimensional RWRE—the perturbative regime

We discuss in this section the perturbative analysis of the RWRE. By P being a small
perturbation from a kernel q we mean that q(±ei) � 0,

∑
i[q(ei) + q(−ei)] = 1, and for

some ε small, |ω(x, x + e) − q(e)| < ε for e ∈ {±ei}. When q(e) = 1/2d for e = ±ei , we
say that P is a small perturbation from simple random walk.

We already observed, see remark 4.15, that in the perturbative regime for simple random
walk, the RWRE can exhibit behaviour which is very different from the behaviour of simple
random walk.



Topical Review R455

6.1. Ballistic walks

Sznitman’s criterion for condition T ′ to hold (see theorem 4.9) together with an renormalization
analysis allow one to give sufficient conditions for ballistic behaviour when ε is small. Set
ρ0(3) = 5/2 and ρ0(d) = 3 for d � 4.

Theorem 6.1. Let d � 3 and ρ < ρ0(d). Then there exists an ε0 = ε0(d, ρ) > 0 such that
if P is i.i.d. and an ε perturbation from simple random walk, and Ed0 · e1 > ερ , then the T ′

condition relative to e1 holds.

Theorem 6.1 appears in [Sz03a]. Contrasting its conclusion with the examples in
remark 4.15 shows that some condition on the strength of the averaged drift Ed0 as a function
of ε is necessary. Also, ρ0(d) > 2 is used in constructing the examples mentioned below
theorem 4.9, which show that Kalikow’s condition is strictly included in condition T ′. We
note that the case d = 2 is still open.

In another direction, if one writes ω(x, x + e) = q(e) + εξ(x, x + e) with ξ i.i.d., and
either

∑
eq(e) �= 0 or

∑
eq(e) = 0 but

∑
eEξ(0, e) �= 0, then for ε small enough, Kalikow’s

condition (4.3) holds. Expansions in ε of the speed of the RWRE are provided in [Sa03].

6.2. Balanced walks

Recall the balanced walks introduced in section 4.4 (cf theorem 4.13). The existence of an
invariance measure viewed from the point of view of the particle, and the control achieved on
this measure by approximations with periodized environments, allows one to get an expansion
of the diffusivity matrix in terms of the strength of the perturbation from simple random walk.
We refer the reader to [L89] for details.

6.3. Isotropic RWRE

The existence of sub-diffusive behaviour for the RWRE model in d = 1 immediately raises
the question as to whether such sub-diffusive behaviour is present in higher dimension. As
pointed out in section 4.2, see theorem 4.6, this is not the case when the environment satisfies
condition T ′. Since it may be expected that condition T ′ characterizes ballistic behaviour for
d > 1, it is reasonable to expect (but not proved!) that for P i.i.d. and uniformly elliptic, and
d > 1, no sub-diffusive behaviour is possible when the walk is transient in the direction � (and
further, in the ballistic regime, when recentring around the limiting velocity v, one expects
fluctuations in the diffusive scale).

Outside the ballistic regime, rigorous results are few. Early attempts to address the
question of the existence of a diffusive regime appeared in [DrL83, F84], using a formal
renormalization group analysis in the small perturbation regime, with the conclusion that no
sub-diffusive behaviour exists at d � 3 in the perturbative regime, and that at most logarithmic
corrections to diffusive behaviour exist at d = 2. While this conclusion certainly conforms to
what one would expect, soon after it was pointed out that counter-examples can be constructed
(albeit not with i.i.d., or even finite range dependent, environments); see [BrD88, Br91,
BGLd87]. Further, some of the examples discussed in this review, and in particular those of
section 4.4, see remark 4.15, do not seem to be consistent with the formal renormalization
analysis.

An attempt to put the analysis on a rigorous foundation was made in [BriKu91]. Among
other things, they introduced the following isotropy condition.
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Definition 6.2. The law P on the environment is isotropic if, for any rotation matrix O acting
on R

d that fixes Z
d , the laws of (ω(0,Oe))e:|e|=1 and (ω(0, e))e:|e|=1 coincide.

In particular, if P is isotropic then Ed0 = 0. The main result of [BriKu91] is the following.

Theorem 6.3 (Bricmont–Kupiainen). Assume d � 3. There exists an ε0 = ε0(d) such that
if P is i.i.d. and isotropic, and an ε perturbation of simple random walk with ε < ε0, then
for some deterministic σ 2 > 0 and for P almost every ω, the sequence Xn/σ

√
n converges in

distribution, under P 0
ω , to a standard Gaussian random variable.

The approach of [BriKu91] is to introduce a (diffusive) rescaling in time and space, and
propagate an estimate on both the large scale behaviour of the RWRE, as well as about the
existence of local traps that have the potential to destroy, at the next level, the diffusivity
properties. The restriction to d � 3 is useful because the underlying simple random walk for
d � 3 is transient, and hence Green function computations can be performed.

Unfortunately, the argument in [BriKu91] is hard to follow, and several attempts have
recently been made to provide an alternative rescaling argument that is more transparent. The
first approach [SzZ06], which is closest to theorem 6.3, has been undertaken in the context
of diffusions in random environments, and consequently we postpone the discussion of it to
section 7.3, even if this reverses the historical order in which results were obtained. In the
remainder of this section, we describe another approach that yields a result concerning the exit
measure of (isotropic) RWRE from large balls.

Let VL = {x ∈ Z
d : |x| � L} be the ball of radius L in Z

d (where we recall that |·| is
the euclidean norm), and let ∂VL = {y ∈ Z

d : d(y, VL) = 1} denote the boundary of VL. Let
τL = min{n : Xn �∈ VL} denote the exit time of the RWRE from VL, and for x ∈ VL, z ∈ ∂VL,
let �L(x, z) = P x

ω

(
XτL

= z
)

denote the exit measure of the RWRE from VL, and let πL(x, z)

denote the corresponding quantity for simple random walk. Finally, let �s
L,l(x, z) = �L �πηl ,

where � denotes convolution and η is a random variable with smooth density supported on
(1, 2). �s

L,l is a smoothed version of �L, where the smoothing is at scale l.
One expects that for an isotropic environment that is a small perturbation of simple

random walk, the exit measure �L approaches that of simple random walk, except for small
nonvanishing correction that are due to localized perturbations near the boundary, and that as
soon as some additional smoothing is applied, convergence occurs. Under the assumptions of
theorem 6.3, this is indeed the case. In what follows, for probability measures µ, ν we write
‖µ − ν‖ for the variational distance between µ and ν.

Theorem 6.4. Assume d � 3. There exists a δ0 = δ0(d) > 0 with the following property: for
each δ < δ0 there exists an ε0 = ε0(d, δ) such that if ε < ε0 and P is an i.i.d. and isotropic
law which is an ε perturbation of simple random walk, then

lim sup
L→∞

‖�L(0, ·) − πL(0, ·)‖ � δ. (6.1)

Further,

lim sup
L→∞

∥∥�s
L,l(0, ·) − πL � πηl(0, ·)∥∥ � cl →l→∞ 0. (6.2)

Theorem 6.4 is proved in [BoZ06]. We sketch the proof. Let Ln+1 = Ln(log Ln)
3. Write

n = �Ln
− πLn

. Considering the exit measures of the RWRE and simple random walk
at scale Ln+1 as those of coarse-grained walks with steps of size Ln (with an appropriate
correction near the boundary), the perturbation expansion gives

�Ln+1(0, z) − πLn+1(0, z) =
∞∑

k=1

[gn+1n]k(0, y)πLn+1(y, z),
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where gn+1 is the Green function of the simple random walk, coarse grained at scale Ln, and
killed when exiting Ln+1.

Consider first the linear term k = 1, and write

�Ln+1(0, z) − πLn+1(0, z) =
∑
w,y

gn+1(0, w)n(w, y)
[
πLn+1(y, z) − πLn+1(w, z)

]
,

where we used that
∑

y n(w, y) = 0. Restrict attention to y ‘in the bulk’, that is y

such that d
(
y, ∂VLn+1

)
> δLn+1. Then, by standard estimates for simple random walk,∥∥πLn+1(y, z) − πLn+1(w, z)

∥∥ � (Ln/Ln+1). On the other hand, since d � 3,
∑

w gn+1(0, w) =
O((Ln+1/Ln)

2), which seems not good enough. However, one can use that the contribution
of different w’s that are not too close together in the sum

∑
w gn+1(0, w)n(w, y) are

independent, and of zero mean due to the isotropy condition. Using that shows that the
linear term contributes a fixed but small contribution to the error in (6.1). Controlling the
nonlinear term involves propagating an estimate of the form (6.2) from scale to scale, using
the smoothing step in the perturbation expansion. This requires one to divide regions into
‘good’ (where this smoothing can be applied) and ‘bad’, aka traps (where smoothing cannot
be propagated, but these regions are rare enough and hence, with high probability, not hit by
the random walk). In fact, bad regions are classified according to four levels of badness, and
some extra care needs to be exercised near the boundary when dealing with (6.1). We omit
further details.

7. Diffusions in random environments

The model of RWRE possesses a natural analogue in the setup of diffusion processes.

7.1. One-dimensional generators

For dimension d = 1, the study of analogues of the RWRE model goes back to [Bx86] and
[Sc85]. Formally, one looks at solutions to the stochastic differential equation

dXt = − 1
2V ′(Xt) dt + dβt , X0 = 0, (7.1)

where β is a standard Brownian motion and V , the potential, is itself an (independent of β)
Brownian motion with constant drift. Of course, (7.1) does not make sense as written, but
one can express the solution to (7.1) for smooth V in a way that makes sense also when V

is replaced by Brownian motion, by saying that conditioned on the environment V,Xt is a
diffusion with generator

1

2
eV (x) d

dx

(
e−V (x) d

dx

)
. (7.2)

The diffusion in (7.1) inherits many of the asymptotic properties of the RWRE model.
Additional tools, borrowed from stochastic calculus, are often needed to obtain sharp
statements. We refer to [Sh01] for details and additional references.

7.2. Multi-dimensional diffusions: finite range dependence

Like the RWRE in dimension d = 1, the model (7.1) leads to a reversible diffusion. A direct
generalization of (7.1) via expression (7.2) for the generator, see for example [Ma94, Ma95],
preserves the reversibility of the process, and thus for our purpose does not serve as a true
analogue of the RWRE model. Instead, we consider diffusions satisfying the equation in R

d :

dXt = b(Xt , ω) dt + σ(Xt , ω)dWt , X0 = 0, (7.3)
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with generator

L = 1

2

∑d

i,j=1
aij (x, ω)∂2

ij +
∑d

i=1bi(x, ω)∂i, (7.4)

where a = σσT is a d-by-d matrix and the coefficients a, b are assumed to satisfy the
following:

Assumption 7.1

(a) The functions a(·, ω) and b(·, ω) are uniformly (in ω) bounded by K, with Lipschitz norm
bounded by K, and a is uniformly elliptic, i.e. a(x, ω) − κI is positive definite for some
κ > 0 independent of x or ω .

(b) The random field (a(x, ω), b(x, ω))x∈R
d is stationary with respect to shifts in R

d .
(c) The collection of random variables (a(x, ·), b(x, ·))x∈A and (a(y, ·), b(y, ·))y∈B are

independent when d(A,B) > R .

Part (a) of assumption 7.1 ensures that (7.3) possesses a unique strong solution. Part (c)
of assumption 7.1 is a ‘finite range dependence’ condition. We continue to write Pω for the
quenched law of the trajectories of the diffusion.

Many of the results described in sections 4.1 and 4.2 have been proved also in the context
of diffusions, when assumption 7.1 holds. We refer to [She03, Goe06, Scz05a, Scz05b] for
details.

7.3. Isotropic diffusions in the perturbative regime

The analogue of the isotropy condition 7.1(b) in the diffusion context is the following.

Assumption 7.2 (Isotropy). For any rotation matrix O preserving the union of coordinate
axes of R

d ,

(a(Ox, ω), b(Ox, ω))x∈R
d has same law under P as (Oa(x, ω)OT ,Ob(x, ω))x∈R

d .

The analogue of theorem 6.3 is the following.

Theorem 7.3. Let assumptions 7.1 and 7.3 hold. Then, there exists a constant ε0 =
ε0(d,K,R) such that if |a(x, ω) − I | � ε0 and |b(x, ω)| � ε0, for all x ∈ R

d , ω ∈ �,
then for some deterministic σ 2 > 0, for a.e. ω, the sequence of random variables Xt/σ

√
t

converges in distribution to a standard Gaussian random variable.

(A full quenched invariance principle also holds under the assumptions of theorem 7.3.)
We sketch briefly the multi-scale approach of [SzZ06] to the proof of theorem 7.3. It is

based on controlling the (scaled) Hölder norm of the operator associated with the transition
probability of the diffusion. More precisely, fix β ∈ (0, 1/2], let Ln+1 = L1+α

n where α is a
small (but fixed) constant. Define the Hölder norm

‖f ‖n,β = sup
x

|f (x)| + Lβ
n sup

x �=y

∣∣∣∣f (x) − f (y)

|x − y|
∣∣∣∣ ,

and for an operator H, let ‖H‖n,β denote the operator norm with respect to the Hölder norm.
Let Rn(x, dy) = P x

ω

(
XL2

n
∈ dy

)
and, with an appropriate sequence αn, set R0

n(x, dy) =
P x

(
WαnL2

n
∈ dy

)
. The heart of the proof is to compare a suitably truncated version of Rn, in

Hölder norm, with R0
n. This is achieved by a perturbation expansion in the same spirit as in

section 6.3, where the control on Hölder norm replaces the smoothing step there. However, as
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explained in section 6.3, an important issue is the avoidance of strong traps, which are measured
here in a way reminiscent of Condition T: namely, with x ∈ Z

d , let Vn(x) = x + [0, Ln]d ,
chop each face of the boundary of Vn(x) into 5d−1 congruent and disjoint d − 1-dimensional
cubes, denoted by Ci(x), and build d-dimensional cubes C ′

i (x) which are based on Ci(x) and
intersect Vn(x) only on Ci(x). With V ′

n(x) = x + [−Ln/4, 5Ln/5]d , declare the strength of
the trapping effect at scale n at x with respect to I and starting positions Ax ⊂ Vn(x) with a
diameter of Ax less than Ln−1, as

Jn,x,Ax,i = inf
{
u > 0 : inf

y∈Ax

P y
ω

(
TC ′

i
� L2

n ∧ T∂V ′
n(x)

)
� c1L

−ξu
n

}
,

with ξ and c1 appropriately chosen constants, and for any set U, TU is the hitting time of U by
the diffusion. Then, the control on traps is achieved by the following inductive estimate: for
any collection A of points x ∈ LnZ

d , and sets Ax as above, which are separated by distance
at least 10dLn−1, and any ix ,

P(for all x ∈ A, Jn,x,Ax,ix � ux) � L
−M̄n

∑
x∈A(ux+1)

n ,

with M̄n an appropriate sequence that converges to a finite positive limit as n → ∞. The
propagation of the control of traps from scale to scale is done either by using the fact that
strong traps are rare and hence rarely hit, or, for not so strong trap, similar to what was done
in the ballistic case, i.e. constructing appropriate exit strategy for the diffusion to exit traps.
We omit further details here, referring the reader to [SzZ06] instead.

8. Topics left out

We briefly mention in this section several topics that are related to this review but that we have
not covered in detail.

8.1. Random conductance model

We have concentrated in this review on RWREs in i.i.d. environments, which give rise in the
multi-dimensional case to non-reversible Markov processes. Although mentioned in several
places, we did not discuss in detail the reversible case, where homogenization techniques
using the environment viewed from the point of view of the particle are very efficient (note
that the reversible case is a very particular case of an environment which is not i.i.d. but rather
dependent with finite range dependence). The prototype for such reversible models is the
‘random conductance model’, where each edge (x, y) of Z

d is associated a (random, i.i.d.)
conductance Cx,y , and the transition probability between x and y is Cx,y

/(∑
z:|z−x|=1 Cx,z

)
.

Annealed CLTs for the random conductance model are provided in [Kun83, DFGW89]. See
also [AKS82] for a related model with symmetric transitions. The quenched CLT is obtained
in [Bov03] and [SdSz04].

One of the motivations to consider the random conductance model is the analysis
of random walk on supercritical percolation clusters. The annealed CLT is covered by
[DFGW89]. Several recent papers discuss the quenched case, first in dimension d � 4
[SdSz04], and then in all dimensions d � 2; see [BeBi06, MaPi05]. In another direction,
when one discusses biased walks on a percolation cluster, new phenomena occur, for example
the lack of monotonicity of the speed of the walk in the strength of the bias, which is again a
manifestation of the trapping phenomenon. We refer to [BeGaP03] and [Sz03b] for details.
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8.2. Brownian motion in a field of random obstacles

Another closely related (reversible) model is the model of Brownian motion in a field of
obstacles in R

d . Here, one defines a potential V (x, ω) = ∑
i W(x − xi) where the collection

{xi} is a (random) configuration of points in R
d (usually, taken according to a Poisson law)

and W is a a fixed nonnegative shape function. Of interest are the properties of Brownian
motion (Xt )t∈[0,T ], perturbed by the change of measure

�T = 1

ZT (ω)
exp

(
−

∫ T

0
V (Xs, ω) ds

)
.

It is common to distinguish between ‘soft traps’, with W bounded and typically of compact
support, and ‘hard trap’, where W = ∞1C where C is a given compact set. One is interested
in understanding various path properties, as T gets large, or in understanding the quenched
partition function ZT (ω) and its annealed counterpart EZT . Due to reversibility, the problem
is closely related to the study of the bottom λω of the spectrum of −/2 +V , and the difficulty
is in understanding the structure of those traps that influence λω. A good overview of the
model and the techniques developed to analyse it, including the ‘method of enlargement of
obstacles’, can be found in [Sz98].

8.3. Time-dependent RWRE

An interesting variant of the RWRE model has been proposed in [BdMP97]. In this model,
the random environment is dynamic, i.e. changes with time, and so we write ω(x, x + e, n)

where we wrote before ω(x, x + e). In the simplest version, the collection of random vectors
(ω(x, x + ·, n))x∈Z

d ,n∈N
is i.i.d. Annealed, the RWRE is then a simple random walk in an

averaged environment, but the true interest lies in obtaining quenched statements. Those were
obtained in [BdMP97, BdMP04] by a perturbative approach. An alternative, simpler proof is
given by [Sta04]. Another approach to the quenched CLT, that covers other cases of random
walk ‘with a forbidden direction’, is developed in [RASe05], based on a general pointwise
CLT for additive functionals of Markov chains due to [DerLi03].

An interpolation between the RWRE model and the i.i.d. dynamical environment model
is when the collection (ω(x, x + ·, n))x∈Z

d ,n∈N
is i.i.d. in x but Markovian in n. This case

has been analysed by perturbative methods in [BdMP00], and by regeneration techniques in
[BaZt06]. In both cases, an annealed CLT holds in any dimension, but the quenched CLT was
obtained only in high dimension. It is still open to determine whether in the Markovian setup,
there are examples where the quenched CLT fails.

8.4. RWRE on trees and other graphs

We have already mentioned the interest in considering random walks on random subgraphs
of Z

d , and in particular percolation clusters. Of course, one may consider instead random
walk (or biased random walk) on other random graphs. A particularly important class of
models treats random walks on random trees, and in particular Galton–Watson trees. We refer
to [LyP06] for an excellent overview of the properties and ergodic theory of such random
walks, and to [PZe06] for recent results concerning the CLT. See also [HuSh06] for slowdown
estimates for the analogue of the RWRE on the binary tree. We emphasize that these models
are all reversible.
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8.5. Non-nearest-neighbour RWRE

Many of the techniques described in this survey have a natural generalization to non-nearest-
neighbour walks. In particular, the results in [V04, RA04] are already stated in terms of
compactly supported transition probabilities, and the development of regeneration times can
easily be extended, following the techniques in [CZ04, CZ05], to the non-nearest neighbour,
finite range setup. However, to the best of my knowledge, no systematic study of RWRE for
non-nearest neighbour RWREs in dimension d � 2 has appeared in the literature.

The situation is different in dimension d = 1, where the RWRE is no longer reversible.
It was early realized, see [Ky84, Le84], that ergodic theorems involve the study of certain
Lyapounov exponents associated with the product of random matrices. For some recent results,
we refer to [BoGos00] and [Bre04b].
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